Adaptive divergence in *Asellus aquaticus*

Moritz Lürig*, 1, Rebecca J. Best*, 1, Marek Svitok*, Jukka Jokela*, 1, Blake Matthews*

* Swiss Federal Institute of Aquatic Science and Technology - Eawag, Aquatic Ecology;
† ETH Zürich, Center for Adaptation to a Changing Environment - ACE

Previous research in Swedish lakes shows rapid phenotypic evolution (size and pigmentation) of the freshwater isopod *Asellus aquaticus* from 1987 to 2000. Ecotype formation appears to have a genetic basis, and has been documented across different lakes.

We have documented phenotypic divergence between Swiss lake and stream populations.

But what ecological factors might be causing this divergence?

Experimental test: Interactive effects of macrophytes and fish on survival and pigmentation of *A. Aquaticus*

Experimental design:

- i) Survival
 - Fish presence reduces survival of *A. aquaticus*.
 - Macrophytes increase survival at high fish density.

- ii) Pigmentation
 - At high fish density, the relationship between size and pigmentation is less steep in the absence than in the presence of macrophytes.

Future experiments: Does phenotypic plasticity explain variability in pigmentation?

i): Diet manipulation in common garden

- Rear offspring of one phenotype under different diets and measure pigmentation as a function valued trait.
- Factorial design with high and low food quality and amino acid supplement.

ii): Common garden with UV light, background and fish kairomones as factors

- Quantitative genetics design with 50 - 60 families
- Microcosm experiments with high phenotypic resolution and replication

Moritz Lürig
Doctoral student @ ETH Zürich / Eawag
Group: Eco-Evo Dynamics
Supervisors: Blake Matthews, Jukka Jokela

moritz.luerig@eawag.ch